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Linearization and symmetry breaking in nonlinear 
SU(3) x SU(3) 

P H  DONDI 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 
Silver St, Cambridge CB3 9EW, UK 

MS received 25 July 1972 

Abstract. A method for constructing linear representations from nonlinearly transforming 
pseudoscalar mesons is developed for the group SU(3) x SU(3). The use of these functions 
as symmetry breaking terms is made apparent in phenomenological Lagrangians and current 
theories where the Schwinger term plays a particularly natural role as the symmetry breaker. 

The general theory of nonlinear realizations of chiral groups is well established (Coleman 
et al1969, Isham 1969). For the group SU(2) x SU(2), the algebraic approach ofweinberg 
(1968) and the matrix method associated with the name of Gursey (Chang and Giirsey 
1967) both lead to general closed form expressions for the transformation laws. Although 
in principle, both these methods are capable ofgeneralization to the group SU(3) x SU(3) 
(Macfarlane et a1 1970), it is only recently that the Gursey approach has been reformu- 
lated in such a way that completely general results can be obtained (Barnes et al1972a, b). 

For the nonlinearly transforming pseudoscalar mesons, an invariant Lagrangian 
can be constructed which displays the Goldstone nature of the mesons in the symmetric 
theory. In order to form a more realistic model, symmetry breaking terms must be 
added to the invariant Lagrangian. As Weinberg (1968) has pointed out, a natural way 
to describe the symmetry breaking part of the Lagrangian is by its transformation 
properties under the action of the chiral group, thus retaining the coordinate indepen- 
dence of the Lagrangian. Then, for SU(2) x SU(2), an isoscalar symmetry breaking terrfi 
can be chosen as the isoscalar from the (N/2, N / 2 )  representation, where N/2 is the SU(2) 
spin label of the representation. When N = 1, the pion scattering lengths from the model 
are equivalent to those calculated by Weinberg using current algebra techniques 
(Weinberg 1966), and which now have some measure of experimental confirmation: 

At the SU(3) x SU(3) level, the strong interaction Lagrangian breaks both the full 
chiral symmetry and the SU(3) symmetry generated by the vector charges but retains 
isospin invariance. To ensure that the Gell-Mann-Okubo mass formula is satisfied, we 
choose the even parity SU(3) singlet and eighth component of the even parity SU(3) 
octet representation from the (m, E) + (E, m) representation of the full chiral group, where 
m labels the dimension of the representation. Although any of these representations can 
be used, two in particular deserve more consideration. When m = 3, we have the model 
of Gell-Mann et al(1968) which has the unique property of SU(2) x SU(2) symmetry as 
the pion mass tends to zero, and which also contains the Weinberg scattering lengths 
for pions. For m = 8, the model of interest is that studied by Barnes and Isham (1970a, b). 
They show that a current+urrent theory of the Sugawara type (Sugawara 1968) can be 
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developed from an underlying nonlinear Lagrangian and that the q number Schwinger 
term that appears in the commutation relations is a natural candidate for symmetry 
breaking in a theory of this kind. The Schwinger term transforms as an (8,8) representa- 
tion of SU(3) x SU(3), so that by choosing the singlet and eighth component of the 
symmetric octet they have the desired SU(3) properties. Their model obviously cannot 
coincide with the (3,3) + (3,3) model and is thus less favourable on present experimental 
knowledge. 

We want to show in this paper that it is possible to construct all the functions of the 
nonlinearly transforming meson fields that form a linear (m, E) representation. We can 
then, as in the SU(2) x SU(2) case, form the symmetry breaking Lagrangian in any 
coordinate frame, to any order. Finally, the (3,3) +(3,3) model can be reconciled with 
the current-current model, whose Schwinger term transforms as an (8,8) representation, 
by considering the nonlinear constraints that the Schwinger term has to obey. Thus 
we demonstrate that it is still possible for the Schwinger term, that appears naturally 
in the current commutators, to play a role in symmetry breaking even when we require 
it to be from the (3,3) + (3,3) representation. 

By way of an introduction, we study the equivalent problem for the SU(2) x SU(2) 
group. No new results are obtained, but we feel that the simplicity ofthe algebra in this 
case allows the reader who is unfamiliar with the methods that we intend to use, to gain 
some insight into the ease with which they may be applied. Now, the (N/2, N/2) 
representation of SU(2) x SU(2) has two Casimir invariants. Further, if we choose the 
isoscalar component, we then have an object that satisfies 

[Qy, SN] = 0 i = 1,2,3 

summation convention 
on repeated indices [QL, [Q), SN]] = iN(N + 2)SN 

where SN is the isoscalar in the (N/2, N/2) representation. QL and QF are one half the 
sum and one half the difference of the physical vector and axial vector generators, and 
generate the commuting SU(2) subgroups. Using this information we obtain 

[Qf, [Qf, SN]] = N(N + 2)SN (4) 

as an equation on SN, and since nz is the only isoscalar available in the theory, we may 
consider equation (4) as a differential equation in the variable n2. We see however; from 
a glance at any of the works on nonlinear realizations given in the references, that n2 
does not have a simple axial transformation and instead we follow the more fundamental 
approach developed in Barnes et al (1972a, b), which the reader should consult for 
further information. We can write a unitary unimodular matrix as 

= eieN+ +e-ieN- ( 5 )  

where 8 is a function of n2 and N = &1 f Niti) are projection operators with NZ = 1 
and z i  the Pauli matrices. The physical pion field is related to N i  by n, = (x2)”’Ni so 
that U is a matrix function of the pions only. The transformation properties of U under 
the chiral group elements can be described by 
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which implies that 

[Qf, 81 = -iNi (7) 

[Qf, N j ]  = - i  cot 8(6,,- N i N j )  (8) 

as demonstrated in Barnes et al(1972b). We have obtained by this parametrization of 
U, an isoscalar which has simple coordinate independent transformation properties so 
that using 

and 

d SN 
d8 [QA, sNi = +QA, el 

in equation (4) we obtain the differential equation 

d2 SN dSN 
de d8 

- 2 - + 2 C 0 t e - + ~ ( ~ + 2 ) ~ ~  = 0. 

(9) 

This is Chebyshev's differential equation and has solutions, finite for 8 = 0, which are 

sin(N + l)8 
s ine ' 

SN = 

as can easily be seen by writing the differential equation for the function SN sin 8. A 
similar re-arrangement when dealing with the SU(3) x SU(3) problem also leads to a 
simple solution. By considering various multiple commutators of SN with the group 
generators, and using the known infinitesimal transformation laws of 8 and N i ,  all the 
components of the linear representation can be found. This completes our introduction 
to the problem for the SU(2) x SU(2) case, however, let us add the comment that once 
the equation to be satisfied by the isoscalar from the (N/2, N/2) representation, equation 
(4), has been derived, it is then just a matter of finding a suitable function of n2 to solve 
the differential equation. Another example of a different parametrization can be found 
in Barnes and Dondi (1971) where the basic isoscalar is taken to be the isoscalar of the 
(i, 4) representation. This reference also contains a full discussion of the connection 
between nonlinear realizations and Schwinger terms for an SU(2) x SU(2) current model 
and we will not go into further details of this aspect of our problem here. 

In extending the method described above to  the group SU(3) x SU(3), we have to 
remember that there are two Casimir invariants for each commuting SU(3) subgroup, 
and that as there is a symmetric, invariant, third rank tensor, we can construct two 
scalars under the vector SU(3) subgroup out of the single octet of pseudoscalar mesons. 

Now, the vector SU(3) scalar from the (m, E) representation, Sm*H, satisfies 

[QY, Sm9iii] = 0 

[Qf, [ Q f ,  Sm.iii]] = CTSm*E 

d i jk [Qf ,  [Qj", [Q,", Sm*iii]]] = C?Smv" 

[QS, [ Q f ,  Sm*E]] = CTSm*iii 

dijk[Qf,  [Q:, [Q:, Sm*iii]]] = C~SmSiii', 

i = 1 , 2  ... 8 

where CT is the quadratic Casimir eigenvalue for the representation labelled by m, and 



1692 P H Dondi 

Cy is the cubic Casimir eigenvalue in the same representation. In terms of the usual 
( p ,  4 )  labelling of SU(3) states, the dimension is given by 

m = %P+ 1)(4+ l)(P+4+2),  

2 - dP2+P4+q2)+(P+4)  

(17) 

and the Casimirs take the values 

(18) 

(19) 

c m  - 1 
c; = &P - d ( 2 P  + 4 + 3)(P + 24 + 3). 

[QA, [QA, Smsiii]] = 4C;Sm9" 

diJk[Qf, [Q;, [ Q t ,  Sm*"]]] = 8C;Sm9" 

Since C;t = CT and C; = - CT, we can combine equations (12H16) to give 

(20) 

and 

(21)  

which play an equivalent role in SU(3) x SU(3) to that of equation (4) in SU(2) x SU(2), 
and are to be considered as differential equations in terms of the SU(3) scalars of the 
theory. The commutators of the axial generators with both MiMi and d l J , M I M J M k ,  
the SU(3) scalars formed from the pseudoscalar meson octet M I ,  and the totally sym- 
metric tensor diJk ,  are complicated objects to  deal with and we again rely on the more 
basic approach developed in Barnes et a! (1972a, b) to solve the problem. 

The SU(3) unitary, unimodular matrix can be written as 

U = U,Po+ U+P+ + U-P- = U,P, (22) 

where Pa are the projection operators of Barnes er a1 (1972a) (we advise the reader to 
consult this reference for full details as they are too important to  review briefly in this 
paper), and U ,  each have modulus unity and multiply together to  give unity. Further- 
more, U ,  are functions ofthe two SU(3) scalars, and the projection operators are known 
explicitly in terms of the meson fields (Barnes er a /  1972a). We can use particular 
exponential expressions for U,,  and write 

U = e i 2 R p o + e - K R + f ) p  + + e - i ( R - f ) p  - 

where R and 9 are related to the 0 of Barnes et a1 (1972a) by 0 = R+i4iv/3.  
The axial transformation of U is given by 

[ Q A ,  U ]  = + { U ,  &), 

where Ai are the Gell-Mann matrices, which implies in turn that 

[QA, 4 = -is, 

and 

[ Q A ,  RI = iqiI J3 

where si and q i  are the special and charge vectors of Barnes et al(1972a). They will not 
appear in our final equation for Sm@, however, as in the SU(2) x SU(2) problem, their 
commutation relations with the axial generators are required, and these are given by 

(27) 

(28) 

[QA, qj]  = itJ3(cot( +)Pi;)+ cot(-))PI,J)) 

[QA, s j ]  = --(cot $P$:)++ cot( +)P!f'-+ cot( -)e,:)) 
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where (+ ) = (3R + 9)/2,  ( -) = (3R - 9 ) / 2  and the tensors are given as functions of qi 
and si as (Barnes 1972) 

f i y )  = 8dij+2J3dijkqk+qiqj-3SiSj) (29) 

f i f '  = 5[6i,-J3dijkqk-2qiqjT { 3 d i j k s k - J 3 ( q i s j + s i q j ) } ] .  (30) 

The simplicity and coordinate independent nature of the commutators given in 
equations (25) and (26) leads us to  choose R and 9 as our basic independent - SU(3) 
scalars with which to set up the differential equations for the function Sm3". Using 

together with the commutators given in equations (25H28) and the properties of the 
charge and special vectors, straightforward manipulation gives 
1 a 2 s m . E  a 2 s m . Z  a s m Z  

3 BR2 aR 
-- +-(cot( +) + cot( -)) 

a p , Z  - 

+-(2cot ~+cot (+) -co t ( - ) )+4C;Sm~m = 0 (32) a 9  

as the differential equation that arises from equation (20). Although this is a partial 
differential equation, it obviously bears a marked resemblance to its SU(2) counterpart. 
Equation (21) leads, in a similar way, to a third order partial differential equation, 
which we leave the reader to derive if he wishes. Transforming equation (32) into a 
differential equation for the function F = sin 9 sin( +) sin( - ) S m , E  we obtain the simple 
form 

1 a 2 F  B2F 
3 BR2 --+-- -4(C';+l)F 

whilst the third order equation for F from equation (21) is 

(33) 

We may solve equation (33) by assuming a separable solution F = F1(R)F2(4, then 

(35) 

(36) 

F 1 -  - A eJ(3a)R + B e - J ( 3 a ) R  

and 
F - ~ ~ i k $ + ~ ~ - i k $  

2 -  

where k = {4(C;+ l)+ct), and A ,  B, C, D, and ct are arbitrary constants. Using the 
separation in the second equation on F, we obtain the first order equation 

- i(2Cy) 
Fl _ -  aF1 - 

BR $ct+(C';+l) (37) 

which implies 

3ct{3a + (C'; + l)}Z = - (2C32,  (38) 

and that either A or B is zero. We may arbitrarily choose B = 0 without loss ofgenerality. 
The cubic equation in ct has roots - ( p  - q)'/3, - ( p  + 2q + 3)2/3 and - (2p + q + 3)2/3 as 
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can easily be seen by using the expressions for the Casimir eigenvalues in terms of p and 
q. The corresponding values of k are ( p + q +  2), ( p +  l), and (q+  1) respectively. We 
thus have as the general solution of the differential equations (33) and (34) which is 

1 F = A ,  e-'(P-q)R(el(p+q+2)9+B1 e - N p + q + 2 ) 9  

+ A ,  ~ - N P +  2 q  + 3)R(eO + 1 )9 + B ,  e- I (P  + 1)9) 

+ A ,  eNZp+q+3)R(el(q+ 1 ) 9 + ~ ,  e-Nq+ 1)9) (39) 

where A ,  and B,,  i = 1,2,3 are arbitrary constants to be determined by the boundary 
condition that the SU(3) scalar SmvK is finite even when the angles 8 (+), ( - )  are zero. 
This implies, by the connection between I: and SmSiii, that F is zero at  these points and 
therefore that B ,  = B ,  = B ,  = - 1 and A ,  = A ,  = - A l  so that our final answer is 
that the function of the meson fields transforming as a scalar under the vector SU(3) 
subgroup, and belonging to the (m,  m) representation of the full chiral SU(3) x SU(3) is, 
up to a multiplicative arbitrary constant, 

Sm-" = (e-I(P-q)R s i n ( p + q + 2 ) 4 + e - , ( ~ + 2 4 + 3 ) R  sin(p + 1)4  

+ e'('p+q+ sin(q + 1)4}/sin $(cos 9 -cos 3 ~ ) .  (40) 

It is interesting to note, that for the selfconjugate representations which have p = q, 
this solution reduces to 

sin@+ 1 )4  sin@+ 1)( +) sin@+ 1)( - )  
sin 4 sin( + ) sin( - ) 

which furtherdemonstrates thesimilarityofthe methodsofdealingwith the SU(2) x SU(2) 
and SU(3) x SU(3) case. 

The solution that we have obtained for S"*" together with the commutators in 
equations (25H28) allows us to generate all of the components of the linear representa- 
tions of the (m, E) type as functions of the meson fields. As an obvious example, the 
(3,3) representation has nine components, and the octet is produced from the scalar by 
forming the commutator of S3,3  with an axial generator 

[QA,S3,3] = O; ,3 ,  (42) 

The (8,8) tensor has among its SU(3) irreducible parts, two octets, and noticing that the 
scalar has positive parity, we can define 

[Qf, S8,*] = io:? (43) 

which are the antisymmetric and symmetric octets respectively. Further manipulation 
of multiple commutators gives the other SU(3) irreducible representations in (8,8). 

The physical significance of this calculation is that we are now able to produce 
phenomenological Lagrangians with manifest coordinate invariance. The (3,3) + (3,3) 
model has a symmetry breaking term 
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where Ci are arbitrary constants, and in terms of the angles R and 9 and the vectors si 
and qi this is just 

C,2fcos 2R + 2 cos 3 cos R )  + C24 (cos R cos 9 - 2 cos 2R)* + sin R sin 9 s 8  

whilst the (8,8) model contributes terms 

(46) ( J3 1 
(47) c'ls8,8 + c' 0 8 3  

2 S8 

which can also be written as a function of R ,  8 q i  and si. In fact, it is possible to construct 
symmetry breaking scalar and octet pieces for any (m, E) +(E, m) representation which 
are given explicitly as functions of the meson fields. 

Now let us turn our attention to the current-current model of Barnes and Isham 
(1970a, b). Their symmetry breaking term in exponential coordinates is exactly equiva- 
lent to  that given in equation (47), as we shall later demonstrate. Further, we wish to 
show that the Schwinger term can be used to describe any mode of symmetry breaking 
and thus their model need not be discarded simply on the grounds of having the wrong 
pion scattering lengths. By comparing the form of the operator Schwinger term in 
Barnes and Isham (1970a) with the work of Barnes et al(1972a), we can easily observe 
that it may be written as a function of the matrix U : 

(48) Sy = -"Tr(UAiU'Lj) f 2  
8 

where f, is the pion decay constant, and for exponential coordinates 

U = exp(iM,~,/fn), (49) 

we reproduce the special case considered by Barnes and Isham, that is 

(50) sy = f 2  eXp(2f; 'Mk fkij)  4 

wherefkij are the usual Gell-Mann structure constants (Gell-Mann and Ne'eman 1964). 
We may also use equation (48) to confirm our earlier results, since the trace of Sy, and 
dijkS): form scalar and octet components of an (8,8) tensor. 

Note that this Schwinger term is more restricted than the one considered in Barnes 
and Isham (1970b), since not only does it satisfy 

(51) 

as the constraint implied by the Schwinger condition and the construction of the energy 
momentum tensor to avoid parity doubling, but it also obeys (Macfarlane 1968) 

syg; = f4  "6. 
16 I k '  

( - 4f; ' ) 3 d d , & R S ~ ~ S ~ ~  = d,. 

dijk(RfRrRg + LfLJLp) = 0 

(52)  

For Sugawara type theories (Sugawara 1968), this condition requires 

(53) 

where R: and L: are the right and left currents respectively, a is the SU(3) index and p 
the Lorentz index. This is rather an exotic condition, and has played no part in the 
development of current theories so far. However, from our point of view, it is just the 
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two nonlinear constraints of equations (51) and (52) that reduce the number of indepen- 
dent components in Sy from sixty four to  eight and allow it to be written as a function 
of the U matrix. It is possible (Macfarlane 1968) to invert the expression for SI;" as a 
function of U ,  and obtain 

31+ Tr R) + $2,Ki 
{31 +TrR)2 -$KiK,]  1'3 

U =  (54) 

where Rij = ( -  4f; 2)S): and K ,  = dijkRjk i- ~ j k R j k .  But this step has obviously solved 
the problem, as we now have a direct relationship between the Schwinger term and the 
independent components of U .  Thus, where we have functions of R, 8 qi  and si forming 
the (m,R) representation we can write them explicitly as functions of SbR by using 
equation (54), and therefore any mode of symmetry breaking can be written in the 
current-current model as a function of the Schwinger terms. 

In conclusion, we have shown that using nonlinearly transforming meson fields it is 
possible to form the linear (m, e) representations of chiral SU(3) x SU(3) as functions 
of the meson fields in a general coordinate system. The method used to complete this 
task was shown to be applicable to both SU(2) x SU(2) and SU(3) x SU(3) and extension 
to SU(n) x SU(n) is possible since the general formalism for constructing nonlinear 
realizations of the higher groups has been given in Barnes et al (1972b). The basic 
problem then is due to  an increase in the number of Casimir invariants which is n - 1 
for SU(n) and therefore leads to  n - 1 partial differential equations. We hope to say 
more on this topic in a later paper. 

The construction of symmetry breaking phenomenological Lagrangians is an 
obvious example of the use of the solutions that we have obtained and allows the full 
Lagrangian for physical processes to be written in any coordinate system. Further, we 
have established that Schwinger terms do  provide a suitable mechanism for symmetry 
breaking in current theories, whatever (m, R) + (E, m )  representations of SU(3) x SU(3) 
we require the symmetry breaking to  be from, if they obey a further condition suggested 
by nonlinear models. The particular model described by Barnes and Isham (1970a, b) 
can therefore be reconstructed with (3,3)+(3,3) symmetry breaking, although it is in 
the form of a complicated nonlinear function of the Schwinger terms. The physics of the 
model is still provided by going to a phenomenological Lagrangian, so that the out- 
standing problems of current-current theories still remain and clearly require further 
investigation. 

Acknowledgments 

I am particularly indebted to  Professor K J Barnes for his invaluable encouragement 
and criticism during the performance of this work and should also like to thank Dr P 
Dittner for several helpful comments. Financial support from the SRC is gratefully 
acknowledged. 

References 

Barnes K J 1972 J .  Phys. A : Gen. Phys. 5 83C-7 
Barnes K J and Dondi P H 1971 Nucl. Phys. B 25 218-26 



Linearization and symmetry breaking in SU(3) x SU(3) 1697 

Barnes K J, Dondi P H and Sarkar S C 1972a J .  Phys. A :  Gen. Phys. 5 555-62 
- 1972b Proc. R. Soc. A 330 389-415 
Barnes K J and Isham C J 1970a Nucl. Phys. B 15 333-49 

Chang P and Gursey F 1967 Phys. Rev. 164 1752-61 
Coleman S, Wess J and Zumino B 1969 Phys. Rev. 177 2239-47 
Gell-Mann M and Ne’eman Y 1964 The Eighlfold Way (New York: Benjamin) 
Gell-Mann M, Oakes R J and Renner B 1968 Phys. Rev. 175 2195-9 
Isham C J 1969 Nuovo Cim. A 59 356-76 
Macfarlane A J 1968 Commun. math. Phys. 11 91-8 
Macfarlane A J, Sudbery A and Weisz P 1970 Proc. R. Soc. A 314 217-50 
Sugawara H 1968 Phys. Rev. 170 1659-62 
Weinberg S 1966 Phys. Reo. Lett. 17 616-21 

- 1970b NUCI. Phys. B 17 267-76 

- 1968 Phys. Rw. 166 1568-77 


